Santa Barbara Water

Water Treatment Plant Improvements

High Quality Drinking Water - A Tradition

The Cater Water Treatment Plant was constructed in 1964 to treat water from Lake Cachuma for the residents of Santa Barbara. Over the years it has been expanded to also treat water from Gibraltar Reservoir, and to treat Cachuma water for Montecito, Summerland and Carpinteria. Currently chlorine is added at the beginning of the treatment process to condition the water so that organic matter is filtered out. Chlorine is also added at the end of the treatment process to provide a lasting disinfectant to keep bacteria from growing in the water.

New Water Regulations

Recent changes in regulations set by the U.S. Environmental Protection Agency (EPA) require that the City change the way it treats our drinking water. The EPA has developed a stricter standard for disinfection byproducts – chemical compounds that are formed when chlorine reacts with organic materials in the water.

Ozone for Better Water Treatment

To comply with the new EPA regulations, the City will switch to using ozone at the beginning of the water treatment process. Ozone is more effective at conditioning water to remove organic matter.

Since the treated water contains less organic matter, fewer disinfection by-products are formed.

Ozone has been used in water treatment for over 100 years. Today there are over 400 water treatment plants in the United States using ozone. The construction costs for the ozone generation facility, ozone contactor (where ozone is mixed with water), and other related plant improvements are anticipated to be \$20 million. A low interest loan will provide the funds for this project. The loan will be repaid from water rate revenue. The project is scheduled to begin in 2011.

Cater Water Treatment Plant, located in the San Roque foothills

Lake Cachuma, Cater's main water source

Drinking Water Treatment Regulations

The City gets most of its drinking water from Lake Cachuma and Gibraltar Reservoir. A portion of the City's water also comes from wells. As water travels over land or through the ground, it dissolves naturally-occurring minerals and, in some cases radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in the water source include:

- Microbial contaminants such as bacteria and viruses that may come from wildlife or human activity.
- Inorganic contaminants such as salts and metals that can be naturally-occurring or result from human activities.
- Radioactive contaminants, which can be naturally-occurring.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater run-off, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-products of industrial processes, petroleum production and use, or agricultural applications and septic systems.

To ensure safe drinking water, federal and state regulations limit the amount of certain contaminants in public water systems. Regulations also establish limits for contaminants in bottled water to provide protection for public health.

In 2009, as in previous years, City of Santa Barbara water met all primary state and federal standards for drinking water. All of the drinking water that comes from Lake Cachuma and Gibraltar Reservoir is treated at the Cater Water Treatment Plant before being distributed to customers. Those who have questions about water quality may call the water department in their community and ask for a copy of their Consumer Confidence Report, such as this.

Special Info Available

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as those who: are undergoing chemotherapy, have undergone organ transplants, have HIV/ AIDS or other immune system disorders, or are very old or young can be particularly at risk from infections. These people should seek advice from their health care providers about drinking water. **USEPA/Centers for Disease Control** (CDC) quidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the EPA Safe Drinking Water Act Hotline at 1-800-426-4791 or www.epa.gov/safewater/.

Safe Drinking Water Hotline and Web Site

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA Safe Drinking Water Act Hotline at 1-800-426-4791 or visiting their website at www.epa.gov/safewater/.

State of the Water Supply

drought, which has reduced State Water the moderate El Niño conditions of 2010 availability, has affected Santa Barbara. were enough to fill Gibraltar and almost Fortunately, the City currently has very limited demand for State Water. Our in good shape, but we are always just a primary water supply is Lake Cachuma, which is a multi-year storage facility drought. This is why water conservation that reduces the impact of periodic dry is so important. Water saved this year is years. The Gibraltar Reservoir is anoth- available for use in future years if local er important water source. Gibraltar and conditions turn dry again.

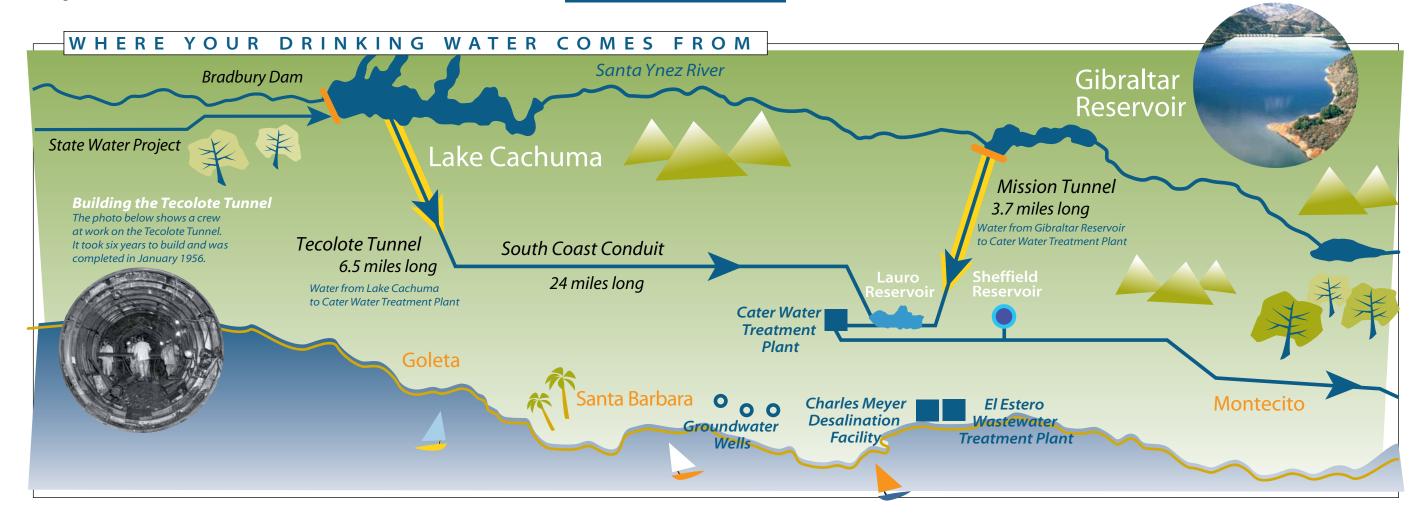
Many people wonder how the statewide Cachuma filled completely in 2008 and fill Cachuma again. Our water supply is few years away from another potential

Conservation is one of many issues being studied to update the City's Long Term Water Supply Program. The update will assess the City's many supply sources, anticipated demand, and opportunities to boost water conservation and use of recycled water. For more information, visit: SantaBarbaraCA.gov/water or call 564-5460.

For Water Wise Gardening in Santa Barbara County website and CD visit: SantaBarbaraCA.gov/water

Your Water Softener Setting

The City's surface water at Cater Water Treatment Plant has a hardness range of 20 to 25 grains per gallon. The City's groundwater supplies have a hardness range of 12 to 40. One grain per gallon equals 17.1 milligrams per liter.


Radon

Radon is a radioactive gas that you can't see, taste, or smell that is found throughout the United States. It occurs naturally in certain rock formations. As a result, radon can be found in Santa Barbara's groundwater. Groundwater is a small part (7.6%) of the City's total water supply. Radon has not been detected in the City's surface water. Radon can enter homes through cracks or holes in foundations and floors. Radon can also get indoors when released from tap water. Test your home if you are concerned about radon. Testing is inexpensive and easy. For additional information, call your State radon program 1-800-745-7236, the EPA Safe Drinking Water Act Hotline 1-800-426-4791, or the National Safe Council Radon Hotline 1-800-SOS-RADON.

Limited Potential for Contamination

The City has evaluated the vulnerability of our water supplies to contamination. For potential contaminates at Lake Cachuma, the use of two stroke engines contributes MTBE to the water. Gibraltar Reservoir's remote location, and the restriction of access to the reservoir limit opportunities for contamination. City groundwater supplies are generally located deep beneath the surface. Nonetheless, there is the potential for contaminants from surface sources such as gasoline stations and dry cleaners to reach City water supplies. All water sources are carefully monitored to ensure that pollutants are not present at levels exceeding state and federal standards. For more information, call 568-1008.

2009 City Drinking Water Quality Report

Definitions

Public Health Goal (PHG)

The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Contaminant Level Goal (MCLG)

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Maximum Contaminant Level (MCL)

The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Maximum Residual Disinfectant Level (MRDL)

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Regulatory Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers a treatment or other requirements which a water system must follow.

Treatment Technique (TT)

A required process intended to reduce the level of contaminants in drinking water.

Primary Drinking Water Standards (PDWS)

MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Secondary Drinking Water Standards (SDWS)

MCLs for contaminants that effect taste, odor, or appearance of drinking water. Contaminants with SDWS do not affect the health at MCL levels.

Unregulated Contaminant Monitoring Regulations (UCMR)

Data generated by the new UCMR will be used to evaluate and prioritize contaminants on the Drinking Water Contaminant Candidate List, a list of contaminants EPA is considering for possible new drinking water standards. Also known as "State Regulated Contaminants with No MCLs".

Legend

μg/L:	Micrograms per liter
	(parts per billion)
mg/L:	Milligrams per liter
	(parts per million)
ND:	Not detected at
	testing limit
NTU:	Nephelometric
	Turbidity Units
pCi/L:	PicoCuries per liter
	(a measure of radiation
μmhos/cm:	Micromhos per
	centimeter
DBP:	Disinfection By-produc
NA:	Not applicable or no

standard or no data

PRIMARY STANDARDS

Regulated Contaminants with Primary MCLs or MRDLs										
	Maximum Contaminant	Public Health Goal	Highest Single Samples ≤0.3 NTU Measurement		≤0.3 NIU	Major Sources in Drinking Water				
Microbiological Contaminants	Level (MCL)	Cour	0.06				Dilliking Water			
Turbidity (NTU)	NA	TT = 1 NTU			100%		Natural river sediment/soil run-off			
		TT = 95% of samples					india in el sedifici (sortar ori			
		<u>≤</u> 0.3 NTU								
Lead/Copper Rule Monitored at the Custor	ner's Tap		90th % Value	# of Sites Sampled	# of Sites Exceed	ding Action Level				
Copper (mg/L)	AL, 1.3	0.3	0.26	31		0	Internal corrosion of household plumbing systems; erosion of natural			
Lead (µg/L)	AL, 15	0.2	2.9	31		0	deposits; leaching from wood preservatives			
Disinfection By-products, Disinfectant Residuals,			System Wide		System Wide					
and Disinfection By-product Precursors			Average		Range					
Total Trihalomethanes (µg/L)	80	NA	,		26.	- 126	By-product of water disinfection			
Haloacetic Acids (µg/L)	60	NA NA	<u>55.1</u> 8.6		ND - 19.0		By-product of water disinfection			
Disinfectant - Chlorine as Cl ₂ (mg/L)	MRDLG, 4.0	MRDLG, 4	0.63		ND - 2.60		Drinking water disinfectant added to treatment			
	MCL	Public Health	Surface Water		Groundwater		Drinking water usiniectant added to treatment			
	MICL	Goal	Average	Range	Average	Range	Various natural and manmade sources. Total Organic Carbon (TOC) has			
Control of DBP Precursors - TOC (mg/L)	TT	NA	2.76	2.24 - 3.19	0.36	0.21 - 0.55	no health effects. However, it provides a medium for the formation of disinfection by-products.			
Radioactive Contaminants										
Gross Alpha Particle Activity (pCi/L)	15	MCLG, 0	ND	NA	ND	ND - 3.7	Erosion of natural deposits			
Radon (pCi/L)	NA	NA	NA	NA	315	310 - 320	See reporting notice on Radon in this report.			
Inorganic Contaminants										
Aluminum (mg/L)	1	0.6	0.08	0.01 - 0.30	0.03	ND - 0.25	Erosion of natural deposits			
Arsenic (μg/L)	10	0.004	1.3	1.1 - 3.5	0.5	ND - 1.9	Erosion of natural deposits			
Chromium (µg/L)	50	MCLG, 100	1.8	ND - 5.6	4.3	ND - 11.9	Erosion of natural deposits			
Fluoride (mg/L)	2.0	1	0.43	0.24 - 0.52	0.36	ND - 0.60	Erosion of natural deposits; discharge from fertilizer & aluminum factories			
Nitrate as NO ₃ (mg/L)	45	45	0.37	ND - 1.24	9.95	0.58 - 41.6	Erosion of natural deposits; run-off from fertilizer use			
Selenium (µg/L)	50	MCLG,50	ND	No Range	7.6	No Range	Erosion of natural deposits			
State Regulated Contaminants with No MCLs, i.e. Unregulated Contaminants										
	MCL	Public Health Goal	Surface Water Average	Surface Water Range	Groundwater Average	Groundwater Range				
	Notification	duai	Avelage	nanye	Avelage	naliye				
Boron (µg/L)	Level, 1000	NA	380	No Range	110	70 -160				
Hexavalent chromium, - Cr VI (µg/L)	NA	NA	ND	NA	0.58	ND - 1.90	Erosion of natural deposits			

SECONDARY STANDARDS

Total Alkalinity as CaCO₃ (mg/L)

Calcium as Ca (mg/L)

Magnesium (mg/L)

Sodium (mg/L)

Potassium (mg/L)

NA

NA

NA

NA

NA

NA

NA

Aesthetic Standards Established By the State of California, Department of Health Services. No adverse health affects from exceedence of standards

Regulated Contaminants with Secondary MCLs									
MCL	Public Health Goal	Surface Water Average	Surface Water Range	Groundwater Average	Groundwater Range				
15	NA	ND	NA	0.25	ND-7	Naturally-occurring organic materials			
1	NA	0.01	ND - 0.05	0.02	0.001 - 0.09	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives			
300	NA	ND	NA	42	ND -280	Leaching from natural deposits			
50	NA	0.2	ND - 2.5	62.6	ND - 200	Naturally-occuring organic materials; causes discoloration of water			
5	NA	ND	NA	1.5	ND - 6.6	Leaking underground gasoline storage tanks; discharge from gasoline and chemical factories			
3	NA	6	2 - 15	9	1-20	Naturally-occurring organic materials			
5	NA	0.12	0.07 - 0.20	0.4	0.09 - 1.23	Soil run-off			
NA	NA	NA	NA	6.5	5.8 - 7.2	Erosion of natural deposits			
5	NA	0.01	0.006 - 0.02	0.02	ND - 0.17	Naturally-occurring in trace amounts, but can be detected in soft, acidic water systems			
1000	NA	651	568-714	810	596 - 1160	Run-off / leaching from natural deposits			
1600	NA	925	852 - 1044	1156	866 - 1758	Run-off / leaching from natural deposits; seawater influence			
500	NA	22.2	17.2 - 27.4	100	42.8 - 213	Run-off / leaching from natural deposits; seawater influence			
500	NA	268	216 - 300	236	156 - 369	Run-off / leaching from natural deposits			
NA	NA	8.05	7.80 - 8.22	6.99	6.61 - 7.22				
NA	NA	398	344 - 430	465	214 - 676				
	MCL 15 1 300 50 5 NA 5 1000 1600 500 NA	MCL Public Health Goal 15 NA 1 NA 300 NA 50 NA 5 NA NA NA NA NA NA NA NA NA NA	MCL Public Health Goal Surface Water Average 15 NA ND 1 NA 0.01 300 NA ND 50 NA 0.2 5 NA ND 3 NA 6 5 NA 0.12 NA NA 0.01 1000 NA 651 1600 NA 925 500 NA 22.2 500 NA 268	MCL Public Health Goal Surface Water Average Surface Water Range 15 NA ND NA 1 NA 0.01 ND - 0.05 300 NA ND NA 50 NA 0.2 ND - 2.5 5 NA ND NA 3 NA 6 2 - 15 5 NA 0.12 0.07 - 0.20 NA NA NA 5 NA 0.01 0.006 - 0.02 1000 NA 651 568-714 1600 NA 925 852-1044 500 NA 22.2 17.2-27.4 500 NA 268 216-300	MCL Public Health Goal Surface Water Average Surface Water Range Groundwater Average 15 NA ND NA 0.25 1 NA 0.01 ND - 0.05 0.02 300 NA ND NA 42 50 NA 0.2 ND - 2.5 62.6 5 NA ND NA 1.5 3 NA 6 2 - 15 9 5 NA 0.12 0.07 - 0.20 0.4 NA NA NA 6.5 5 NA 0.01 0.006 - 0.02 0.02 1000 NA 651 568-714 810 1600 NA 925 852 - 1044 1156 500 NA 22.2 17.2-27.4 100 500 NA 268 216 - 300 236	MCL Public Health Goal Surface Water Average Surface Water Range Groundwater Range Groundwater Range 15 NA ND NA 0.25 ND-7 1 NA 0.01 ND-0.05 0.02 0.001-0.09 300 NA ND NA 42 ND-280 50 NA 0.2 ND-2.5 62.6 ND-200 5 NA ND NA 1.5 ND-6.6 3 NA 6 2-15 9 1-20 5 NA 0.12 0.07-0.20 0.4 0.09-1.23 NA NA NA NA 6.5 5.8-7.2 NA NA 0.01 0.006-0.02 0.02 ND-0.17 1000 NA 651 568-714 810 596-1160 1600 NA 22.2 17.2-27.4 100 42.8-213 500 NA 22.8 216-300 236 156-369			

4.4 Note: Listed in the table above are substances detected in the City's drinking water. Not listed are more than 135 regulated and unregulated substances that were below the laboratory detection level.

190

91.3

40

45

178 - 204

79.3 - 99.3

33 - 48

39 - 52

4.0 - 4.7

248

123

39

67

1.8

200 - 313

84 - 162

22 - 66

42 - 100

1.3 - 2.7

PRSRT STD
U.S. POSTAGE
PAID
SANTA BARBARA, CA
PERMIT NO. 1215

ECRWSS Postal Customer

Get the latest on Santa Barbara's drinking water.

See inside for the City's Water Quality Report.

Save Water Now – It's the Right Thing to Do!

- Rebates available on water wise landscaping, irrigation system upgrades, clothes washers and more
- Receive a free water check-up for your home or business
- Adjust your sprinkler timer's schedule based on the weather use the landscape watering calculator and watering index
- Free rain sensor available

For more information, go to SantaBarbaraCA.gov/water or call 564-5460.

En Español

Este informe contiene información muy importante sobre su agua beber. Tradúzcalo o hable con alguien que lo entienda bien. Si usted tiene preguntas acerca del agua de la ciudad, por favor llame a Don Montoya, a la oficina de Recursos del Agua, al teléfono (805) 564-5387.

